Q.2 a. Show that for any two sets A and B, A - B = A - $(A \cap B)$.

Answer:

 $let x \in (A - B)$ $\Rightarrow x \in A \text{ and } x \notin B$ $\Rightarrow x \in A \text{ and } x \notin (A \cap B)$ $\Rightarrow x \in A - (A \cap B)$ Thus, $(A - B) \subseteq A - (A \cap B)$ (1) Again, let $x \in A - (A \cap B)$ $\Rightarrow x \in A \text{ and } x \notin (A \cap B)$ $\Rightarrow x \in A \text{ and } x \notin (A \cap B)$ $\Rightarrow x \in A \text{ and } x \notin B$ $\Rightarrow x \in (A - B)$ Thus, $A - (A \cap B) \subseteq (A - B)$ (2) From (1) and (2), $A - B = A - (A \cap B)$.

- b. The probability that A hits a target is 1/3 and the probability that B hits a target is 1/5. They both fire at the target. Find the probability that:
 - (i) A does not hit the target.
 - (ii) Both hit the target.
 - (iii) One of them hits the target.
 - (iv) Neither hits the target.

Answer:

We are given p(A) = 1/3 AND P(B) = 1/5 and we assume that they are independent.

- (i) Probability that A does not hit the target = $p(A^c) = 1 p(A) = 2/3$.
- (ii) Probability that both hit the target $= p(A \cap B) = p(A).p(B) = 1/15$.
- (iii) Probability that one of them hits the target = $p(A \cup B)$ $p(A \cup B) = p(A) + p(B) - p(A \cap B) = 7/15.$
- (iv) Probability that neither hits the target = $(p(A \cup B))^c = 1 p(A \cup B) = \frac{8}{15}$.

Q.3 a. Show that $B \rightarrow E$ is a valid conclusion drawn from the following premises:

 $A \lor (B \rightarrow D), \sim C \rightarrow (D \rightarrow E), A \rightarrow C \text{ and } \sim C.$

Answer:

Given that $A \lor (B \rightarrow D)$	
$\Rightarrow ~ \sim A \rightarrow (B \rightarrow D)$	(Because $p \rightarrow q \equiv \neg p \lor q$)(1)
Also given $\sim C$ and $A \rightarrow C$	
$\Rightarrow \sim C \text{ and } \sim C \rightarrow \sim A$	$(p \rightarrow q \equiv \neg q \rightarrow \neg p$, Law of
contrapositive)	
$\Rightarrow \sim A$	(Law of detachment)
Now $\sim A$ and $\sim A \rightarrow (B \rightarrow D)$	(by 1)
\Rightarrow B \rightarrow D	(Law of detachment)(2)
Again by $\sim C$ and $\sim C \rightarrow (D \rightarrow E)$	
\Rightarrow D \rightarrow E	(Law of detachment)(3)
By 2 and 3 we have $B \rightarrow D$ and $D \rightarrow B$	E
We have $B \rightarrow E$	(Law of transitivity)
which is the desired conclusion.	

b. Express the statement $(\sim (p \lor q)) \lor ((\sim p) \land q)$ in simplest possible form.

Answer:

Given $(\sim (p \lor q)) \lor ((\sim p) \land q) = (\sim (p \lor q) \lor \sim p) \land (\sim (p \lor q) \lor q)$ (Distributive Law) $= ((\sim p \land \sim q) \lor \sim p) \land ((\sim p \land \sim q) \lor q)$ (De'Morgan's Law) $= ((\sim p \lor \sim p) \land (\sim q \lor \sim p)) \land ((\sim p \lor q) \land (\sim q \lor q))$ (Distributive Law) $= (\sim p \land (\sim q \lor \sim p)) \land ((\sim p \lor q) \land T)$ $(\sim p \lor p = T \text{ and } p$ $\wedge T = p$) $= (\sim p \land [(\sim q \lor \sim p) \land (\sim p \lor q)]) = (\sim p \land [(\sim q \lor \sim p) \land (q \lor \sim p)])$ $= (\sim p \land [(\sim q \land q) \lor \sim p])$ (By right distributive law) $= (\sim p \land [F \lor \sim p])$ $(\sim p \land p = F \text{ and } p \lor F$ = p) $= (\sim p \land \sim p)$ = ~p.

Q.4 a. Show that $\neg \forall x(P(x) \rightarrow Q(x))$ and $\exists x(P(x) \land \neg Q(x))$ are logically equivalent.

Answer:

We have
$$\neg \forall x(P(x) \rightarrow Q(x)) \equiv \exists x(\sim(P(x) \rightarrow Q(x)))$$
 (Negation)
 $\equiv \exists x(\sim(\sim P(x) \lor Q(x)))$ (by, $p \rightarrow q \equiv \sim p \lor q)$
 $\equiv \exists x(P(x) \land \sim Q(x))$ (by De'Morgan's Law)

b. There are two restaurants next to each other. One has a sign that says, "Good food is not cheap" and the other has a sign that says, "Cheap food is not good". Are the signs saying the same thing?

AC65

Answer:

Let p: Food is good and q: Food is cheap. Then "Good food is not cheap': $p \rightarrow \sim q$ (1) Now "Cheap food is not good": $q \rightarrow \sim p$ Taking the contra positive, we have $p \rightarrow \sim q$ which is same as in (1) Hence both the signs says same thing.

c. Verify that $[p \rightarrow (q \rightarrow r)] \rightarrow [(p \rightarrow q) \rightarrow (p \rightarrow r)]$ is a tautology.

Answer:

р	q	r	A=(p→q)	B=(p→r)	C=(q→r)	D=p→C	E=A→B	D→E
Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F	F	F	Т
Т	F	Т	F	F	Т	Т	Т	Т
Т	F	F	F	F	Т	Т	Т	Т
F	Т	Т	Т	Т	Т	Т	Т	Т
F	Т	F	Т	Т	F	Т	Т	Т
F	F	Т	Т	Т	Т	Т	Т	Т
F	F	F	Т	Т	Т	Т	Т	Т

Hence it is a tautology.

Q.5 a. Let $A = \{1, 2, 3, 4, 5, 6\}$ and let R be the relation defined by "x divides y" written as x / y.

- (i) Write R as a set of ordered pairs.
- (ii) Draw its directed graph.
- (iii) Find \mathbf{R}^{-1} .

Answer:

- (i) According to the given relation R can be defined as
 - $\mathbf{R} = \{(\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \text{ divides } \mathbf{y}, \text{ for all } \mathbf{x} \text{ and } \mathbf{y} \text{ in } \mathbf{A}\}$
 - Thus, $R = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4), (5, 5), (6, 6).$

(ii) Directed graph of relation R:

(iii) $\mathbb{R}^{-1} = \{(1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (2, 2), (4, 2), (6, 2), (3, 3), (6, 3), (4, 4), (5, 5), (6, 6)\}.$

b. Prove that $n! \ge 2^n$ for $n \ge 4$, by using the principle of mathematical induction.

Answer:

Let P(n) be the predicate $n! \ge 2^n$.

Basic Step:- $P(4) : 4! = 24 \ge 16 = 2^4$, hence P(4) is true.

Induction Step:- Let us assume that P(k) is true, i.e; $k! \ge 2^k$ Consider P(k+1) then $(k+1)! = (k+1).k! \dots (1)$ Now since $k \ge 4$ $\Rightarrow (k+1) \ge 4+1 = 5 > 2.$

Also, $k! \ge 2^k$ (by induction hypothesis) Thus $(k + 1)! = (k + 1).k! \ge 2.2^k = 2^{(k+1)}$ Hence proved.

Q.6 a. Let I be the set of integers and R be a binary relation defined on set I as $R = \{(x, y) | x \equiv y \pmod{3}, x \in I, y \in I\}$, show that R is an equivalence relation.

Answer:

 $x \equiv y \pmod{3}$ can be written as x - y = 3k, where k is any integer. Then $R = \{(x, y) | x - y = 3k, x \in I, y \in I \text{ and } k \in I\}$

- 1. <u>Reflexive:</u> For any $x \in I$, x x = 0Hence, x - x is divisible by 3. Therefore R is a reflexive relation.
- 2. <u>Symmetric:</u> for any x, $y \in I(x, y) \in R \Rightarrow x y = 3k$ (k is an integer) $\Rightarrow y - x = 3(-k)$ (-k is an integer) $\Rightarrow (y, x) \in R$ Hence, R is a symmetric relation.
- **3.** <u>**Transitive:**</u> For all x, y, $z \in I$, $(x, y) \in R$ and $(y, z) \in R$
 - $\Rightarrow x y = 3k_1 \text{ and } y z = 3k_2 \qquad (k_1 \text{ and } k_2 \text{ are integers})$ $\Rightarrow (x - y) + (y - z) = 3(k_1 + k_2) = 3m \quad (m = k_1 + k_2 \text{ is an integer})$ $\Rightarrow (x - z) = 3m$ $\Rightarrow (x, z) \in \mathbb{R}$

Hence R is transitive.

Since R is reflexive, symmetric and transitive relation, hence R is an equivalence relation.

b. Prove that if L is a bounded distributive lattice and if a complement exists in L, it is unique.

Answer:

Let L be a bounded and distributive lattice. Let $a \in L$. Let a1 and a2 be two complements of a. Then $a \lor a1 = I$ and $a \land a1 = 0$ and also $a \lor a2 = I$ and $a \land a2 = 0$

Then $a1 = a1 \lor 0 = a1 \lor (a \land a2) = (a1 \lor a) \land (a1 \lor a2)$ (by distributive law)

$$= I \wedge (a1 \vee a2) = (a1 \vee a2) \quad \dots \dots \dots (1)$$

Also $a2 = a2 \vee 0 = a2 \vee (a \wedge a1) = (a2 \vee a) \wedge (a2 \vee a1)$
$$= I \wedge (a2 \vee a1) = (a1 \vee a2) \quad \dots \dots \dots (2)$$

By (1) and (2) we have a1 = a2. Hence complements are unique.

Q.7 a. Consider the functions $f : R \rightarrow R$ and $g : R \rightarrow R$, defined by f(x) = 2x + 3 and $g(x) = x^2 + 1$. Find the composite functions (gof)(x) and (fog)(x).

Answer:

Composite function: Consider a function f: $A \rightarrow B$ such that f(a) = b and g: $B \rightarrow C$ such that g(b) = c, then a function gof: $A \rightarrow C$ is called composite function and defined as $(gof)(a) = g(f(a)) = [c | \exists an element b \in B such that <math>f(a) = b$ and g(b) = c].

We know that
$$(gof)(x) = g(f(x)) = g(2x+3) = (2x+3)^2 = 4x^2 + 12x + 9$$
.
and $(fog)(x) = f(g(x)) = f(x^2) = 2x^2 + 3$.

b. Let X = {a, b, c}. Define f : X→X such that f = {(a, b), (b, a), (c, c)}. Find:

(i) f⁻¹
(ii) f²
(iii) f³
(iv) f⁴

Answer:

Since given function is one-one and onto, we can find it's inverse as

$$f^{-1} = \{(b, a), (a, b), (c, c)\}$$

 $f^{2} = fof = \{(a, b), (b, a), (c, c)\}o\{(a, b), (b, a), (c, c)\} = \{(a, a), (b, b), (c, c)\}$ $f^{3} = fof^{2} = \{(a, b), (b, a), (c, c)\}o\{(a, a), (b, b), (c, c)\} = \{(a, b), (b, a), (c, c)\}$ $f^{4} = fof^{3} = \{(a, b), (b, a), (c, c)\}o\{(a, b), (b, a), (c, c)\} = \{(a, a), (b, b), (c, c)\}$

Q.8 a. Show that the set of rational numbers Q forms a group under the binary operation * defined by a * b = a + b - ab, for all a, b € Q. Is this group abelian?

AC65

Answer:

(Q, *) will form a group if '*' satisfies these four properties:

- (i) Closure property: Let $a, b \in Q$ then $a^*b = a + b ab \in Q$ as addition and multiplication of rational numbers will also be rational number.
- (ii) Associative property: It says $a^{*}(b^{*}c) = (a^{*}b)^{*}c$, for all $a, b, c \in Q$. Then according to the given definition of '*' $a^{*}(b^{*}c) = a^{*}(b + c - bc) = a + (b + c - bc) - a(b + c - bc)$ = a + b + c - ab - ac - bc - abc.....(1) and (a*b)*c = (a + b - ab)*c = a + b - ab + c - (a + b - ab)c= a + b + c - ab - ac - bc - abc.....(2) By (1) and (2) associative property is satisfied. Identity: Let e be the identity, then $a^*e = a$ (iii) a + e - a = a (by definition of '*') then e = 0 and 0 is s rational number. Hence 0 is the identity. Inverse: Let b be the inverse of a such that $a^*b = e = 0$ (iv) Then a + b - ab = 0b = -a/(1-a), since $a \in Q$, $-a/(1-a) \in Q$

Hence for all $a \in Q$, there exist inverse of a in Q such that $a^*a^{-1} = e$.

Thus (Q, *) forms a group. Now for abelian group we have to check for commutative property.

Commutative property: It says, for a, $b \in Q$ a*b = b*aThen a + b - ab = b + a - ba (addition and multiplication are always commutative)

Hence the given set Q with binary operation * defined as a*b = a + b - ab forms an abelian group.

b. How many generators are there of the cyclic group of order 8?

Answer:

Let a be the generator of G. Then o(a) = 8.

We can write $G = \{a, a^2, a^3, a^4, a^5, a^6, a^7, a^8\}$. We know that if G is cyclic group generated by a and o(a) = n, then a^m is a generator of G if and only if m and n are relatively prime. So we make the following observations:

7 is prime to 8, so a^7 is also a generator of G.

5 is prime to 8, so a^5 is also a generator of G.

3 is prime to 8, so a^3 is also a generator of G.

Since 2 and 8, 4 and 8, 6 and 8, 8 and 8 are not relatively prime; therefore none of the elements a^2 , a^4 , a^6 and a^8 can be generator of G.

Hence there are only four generators of G i.e; a, a^3 , a^5 and a^7

Q.9 a. Determine the group code (3, 6) using parity check Matrix H given by

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Answer:

Here the message code consisting 3 information digit is

```
B = [000, 100, 010, 001, 110, 011, 111]
         The generator matrix G of the given parity check matrix is
     100100
G = \left| \begin{array}{c} 0 & 1 & 0 & 0 & 1 & 1 \end{array} \right|
     001111
         So, we find the (3, 6) code C by C = B^{T}.G
            000
                                    000000
            100
                                    100101
            010
                                    0\,1\,0\,0\,1\,1
                     [100100]
            001
                                    001111
                    010011 =
Thus, C =
            110
                                    110110
                     0 0 1 1 1 1
            101
                                    101010
            011
                                    011100
                                    111000
            111
         C is the desired code word.
```

b. Define Ring. Prove that if $a, b \in (R, +, \bullet)$, then $(a + b)^2 = a^2 + a \bullet b + b \bullet a + b^2$, where by x^2 we mean $x \bullet x$.

Answer:

Ring: A non-empty set R with two operations called 'addition' and 'multiplication' is call a ring (R, +, .) if it satisfies the following axioms:

- (i) $(\mathbf{R}, +)$ is an abelian group, that is
 - i. '+' is closed. If $a, b \in R$, then $a + b \in R$.
 - ii. '+' is associative i.e, for any a, b, $c \in R$, (a+b)+c = a+(b+c)
 - iii. '+' is commutative i.e, (a+b) = (b+a)
 - iv. There exist a additive identity e = 0 such that a+0 = 0+a = a
 - v. For $a \in R$, there exist $-a \in R$ such that a+(-a) = (-a)+a = 0.

(ii)	 (R, .) is a semi-group i.e, (a) '.' is closed i.e, for any a, b∈R, a.b∈R vi. '.' is associative i.e, for any a, b, c∈R, (a 	.b).c = a.(b.c)					
(iii)	ii) Multiplication is distributive over addition i.e, a.(b+c) = a.b + a.c and $(a+b).c = a.c + b.c$						
Now it is given that $x^2 = x.x$ Thus $(a + b)^2 = (a + b).(a + b) = a.(a + b) + b.(a + b)$ by distributive law							
	= (a.a + a.b) + (b.a + b.b) = $(a^{2} + a.b + b.a + b^{2})$	given that $x^2 = x.x$					

Hence proved.

TEXT BOOK

Discrete Mathematical Structures, D.S. Chandrasekharaiah, Prism Books Pvt. Ltd., 2005.