Q. 2 a. Show that for any two sets $A$ and $B, A-B=A-(A \cap B)$.

## Answer:

1et $x \in(A-B)$

$$
\begin{align*}
& \Rightarrow x \in A \text { and } x \notin B \\
& \Rightarrow x \in A \text { and } x \notin(A \cap B) \\
& \Rightarrow x \in A-(A \cap B) \tag{1}
\end{align*}
$$

Thus, $(A-B) \subseteq A-(A \cap B)$
Again, let $x \in A-(A \cap B)$

$$
\begin{align*}
& \Rightarrow x \in A \text { and } x \notin(A \cap B) \\
& \Rightarrow x \in A \text { and }(x \in A \text { and } x \notin B) \\
& \Rightarrow x \in A \text { and } x \notin B \\
& \Rightarrow x \in(A-B) \tag{2}
\end{align*}
$$

Thus, $\mathrm{A}-(\mathrm{A} \cap \mathrm{B}) \subseteq(\mathrm{A}-\mathrm{B})$
From (1) and (2), A - B = A - $(\mathrm{A} \cap \mathrm{B})$.
b. The probability that $A$ hits a target is $1 / 3$ and the probability that $B$ hits a target is $1 / 5$. They both fire at the target. Find the probability that:
(i) A does not hit the target.
(ii) Both hit the target.
(iii) One of them hits the target.
(iv) Neither hits the target.

## Answer:

We are given $p(A)=1 / 3$ AND $\mathrm{P}(\mathrm{B})=1 / 5$ and we assume that they are independent.
(i) Probability that $A$ does not hit the target $=p\left(A^{c}\right)=1-p(A)=2 / 3$.
(ii) Probability that both hit the target $=p(A \cap B)=p(A) \cdot p(B)=1 / 15$.
(iii) Probability that one of them hits the target $=p(A \cup B)$

$$
p(A \cup B)=p(A)+p(B)-p(A \cap B)=7 / 15 .
$$

(iv) Probability that neither hits the target $=(p(A \cup B))^{c}=1-p(A \cup B)=$ 8/15.
Q. 3 a. Show that $B \rightarrow E$ is a valid conclusion drawn from the following premises:
$A \vee(B \rightarrow D), \sim C \rightarrow(D \rightarrow E), A \rightarrow C$ and $\sim C$.

## Answer:

Given that $\mathrm{A} \vee(\mathrm{B} \rightarrow \mathrm{D})$

$$
\begin{equation*}
\Rightarrow \sim \mathrm{A} \rightarrow(\mathrm{~B} \rightarrow \mathrm{D}) \quad(\text { Because } \mathrm{p} \rightarrow \mathrm{q} \equiv \sim \mathrm{p} \vee \mathrm{q}) \tag{1}
\end{equation*}
$$

Also given $\sim \mathrm{C}$ and $\mathrm{A} \rightarrow \mathrm{C}$ $\Rightarrow \sim \mathrm{C}$ and $\sim \mathrm{C} \rightarrow \sim \mathrm{A}$ $(\mathrm{p} \rightarrow \mathrm{q} \equiv \sim \mathrm{q} \rightarrow \sim \mathrm{p}$, Law of
contrapositive)

$$
\Rightarrow \sim A
$$

Now $\sim \mathrm{A}$ and $\sim \mathrm{A} \rightarrow(\mathrm{B} \rightarrow \mathrm{D})$
(Law of detachment)
(by 1)

$$
\begin{equation*}
\Rightarrow \mathrm{B} \rightarrow \mathrm{D} \tag{2}
\end{equation*}
$$

Again by $\sim \mathrm{C}$ and $\sim \mathrm{C} \rightarrow(\mathrm{D} \rightarrow \mathrm{E})$
(Law of detachment)
(Law of detachment)
By 2 and 3 we have $\mathrm{B} \rightarrow \mathrm{D}$ and $\mathrm{D} \rightarrow \mathrm{E}$ We have $B \rightarrow E$
(Law of transitivity) which is the desired conclusion.
b. Express the statement $(\sim(\mathbf{p} \vee \mathbf{q})) \vee((\sim \mathbf{p}) \wedge \mathbf{q})$ in simplest possible form.

## Answer:

Given $(\sim(p \vee q)) \vee((\sim p) \wedge q)=(\sim(p \vee q) \vee \sim p) \wedge(\sim(p \vee q) \vee q) \quad$ (Distributive Law)

$$
=((\sim p \wedge \sim q) \vee \sim p) \wedge((\sim p \wedge \sim q) \vee q) \quad \text { (De'Morgan’s }
$$

Law)

$$
=((\sim p \vee \sim p) \wedge(\sim q \vee \sim p)) \wedge((\sim p \vee q) \wedge(\sim q \vee q)) \quad(\text { Distributive }
$$

Law)

$$
\begin{array}{rlr}
\wedge T=p) \quad & (\sim p \wedge(\sim q \vee \sim p)) \wedge((\sim p \vee q) \wedge T) \quad(\sim p \vee p=T \text { and } p \\
& =(\sim p \wedge[(\sim q \vee \sim p) \wedge(\sim p \vee q)])=(\sim p \wedge[(\sim q \vee \sim p) \wedge(q \vee \sim p)]) \\
& =(\sim p \wedge[(\sim q \wedge q) \vee \sim p])
\end{array}
$$

law)

$$
=(\sim \mathrm{p} \wedge[\mathrm{~F} \vee \sim \mathrm{p}]) \quad(\sim \mathrm{p} \wedge \mathrm{p}=\mathrm{F} \text { and } \mathrm{p} \vee \mathrm{~F}
$$

$=p)$

$$
\begin{aligned}
& =(\sim p \wedge \sim p) \\
& =\sim p .
\end{aligned}
$$

Q. 4 a. Show that $\neg \forall x(P(x) \rightarrow Q(x))$ and $\exists x(P(x) \wedge \neg Q(x))$ are logically equivalent.

## Answer:

$$
\begin{aligned}
& \text { We have } \neg \forall \mathrm{x}(\mathrm{P}(\mathrm{x}) \rightarrow \mathrm{Q}(\mathrm{x})) \equiv \exists \mathrm{x}(\sim(\mathrm{P}(\mathrm{x}) \rightarrow \mathrm{Q}(\mathrm{x}))) \quad \text { (Negation) } \\
& \equiv \exists \mathrm{x}(\sim(\sim \mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x}))) \quad(\mathrm{by}, \mathrm{p} \rightarrow \mathrm{q} \equiv \sim \mathrm{p} \vee \mathrm{q}) \\
& \equiv \exists \mathrm{x}(\mathrm{P}(\mathrm{x}) \wedge \sim \mathrm{Q}(\mathrm{x})) \quad \text { (by De'Morgan's Law) }
\end{aligned}
$$

b. There are two restaurants next to each other. One has a sign that says, "Good food is not cheap" and the other has a sign that says, "Cheap food is not good". Are the signs saying the same thing?

## Answer:

Let p: Food is good and q: Food is cheap.
Then "Good food is not cheap': $p \rightarrow \sim q$
Now "Cheap food is not good": $q \rightarrow \sim p$
Taking the contra positive, we have $p \rightarrow \sim q$ which is same as in (1)
Hence both the signs says same thing.
c. Verify that $[\mathbf{p} \rightarrow(\mathbf{q} \rightarrow \mathbf{r})] \rightarrow[(\mathbf{p} \rightarrow \mathbf{q}) \rightarrow(\mathbf{p} \rightarrow \mathbf{r})]$ is a tautology.

## Answer:

| $\mathbf{p}$ | $\mathbf{q}$ | $\mathbf{r}$ | $\mathbf{A}=(\mathbf{p} \rightarrow \mathbf{q})$ | $\mathbf{B}=(\mathbf{p} \rightarrow \mathbf{r})$ | $\mathbf{C}=(\mathbf{q} \rightarrow \mathbf{r})$ | $\mathbf{D}=\mathbf{p} \rightarrow \mathbf{C}$ | $\mathbf{E}=\mathbf{A} \rightarrow \mathbf{B}$ | $\mathrm{D} \rightarrow \mathbf{E}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| T | T | T | T | T | T | T | T | T |
| T | T | F | T | F | F | F | F | T |
| T | F | T | F | F | T | T | T | T |
| T | F | F | F | F | T | T | T | T |
| F | T | T | T | T | T | T | T | T |
| F | T | F | T | T | F | T | T | T |
| F | F | T | T | T | T | T | T | T |
| F | F | F | T | T | T | T | T | T |

Hence it is a tautology.

## Q. 5 a. Let $A=\{1,2,3,4,5,6\}$ and let $R$ be the relation defined by

 " $x$ divides $y$ " written as $x / y$.(i) Write R as a set of ordered pairs.
(ii) Draw its directed graph.
(iii) Find $\mathrm{R}^{-1}$.

## Answer:

(i) According to the given relation $R$ can be defined as
$\mathrm{R}=\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}$ divides y , for all x and y in A$\}$
Thus, $\mathrm{R}=\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,2),(2,4),(2,6),(3$, $3),(3,6),(4,4),(5,5),(6,6)$.
(ii) Directed graph of relation R:
(iii) $\mathrm{R}^{-1}=\{(1,1),(2,1),(3,1),(4,1),(5,1),(6,1),(2,2),(4,2),(6,2),(3,3),(6$, $3),(4,4),(5,5),(6,6)\}$.
b. Prove that $n!\geq 2^{n}$ for $n \geq 4$, by using the principle of mathematical induction.

Answer:
Let $\mathrm{P}(\mathrm{n})$ be the predicate $\mathrm{n}!\geq 2^{\mathrm{n}}$.
Basic Step:- $P(4): 4!=24 \geq 16=2^{4}$, hence $P(4)$ is true.
Induction Step:- Let us assume that $\mathrm{P}(\mathrm{k})$ is true, i.e; $\mathrm{k}!\geq 2^{\mathrm{k}}$
Consider $\mathrm{P}(\mathrm{k}+1)$ then $(\mathrm{k}+1)!=(\mathrm{k}+1) \cdot \mathrm{k}!\ldots .$. (1)
Now since $\mathrm{k} \geq 4$
$\Rightarrow(\mathrm{k}+1) \geq 4+1=5>2$.
Also, $\mathrm{k}!\geq 2^{\mathrm{k}}$ (by induction hypothesis)
Thus $(\mathrm{k}+1)!=(\mathrm{k}+1) \cdot \mathrm{k}!\geq 2 \cdot 2^{\mathrm{k}}=2^{(\mathrm{k}+1)}$
Hence proved.
Q. $6 \quad$ a. Let $I$ be the set of integers and $R$ be a binary relation defined on set $I$ as $R=\{(x, y) \mid x \equiv y(\bmod 3), x \in I, y \in I\}$, show that $R$ is an equivalence relation.

## Answer:

$x \equiv y(\bmod 3)$ can be written as $x-y=3 k$, where $k$ is any integer.
Then $R=\{(x, y) \mid x-y=3 k, x \in I, y \in I$ and $k \in I\}$

1. Reflexive: For any $x \in I, x-x=0$ Hence, $\mathrm{x}-\mathrm{x}$ is divisible by 3 . Therefore R is a reflexive relation.
2. Symmetric: for any $x, y \in I(x, y) \in R \Rightarrow>x-y=3 k \quad$ ( $k$ is an integer)

$$
\begin{aligned}
& \Rightarrow y-x=3(-k) \\
& \Rightarrow(y, x) \in R
\end{aligned}
$$

Hence, R is a symmetric relation.
3. Transitive: For all $x, y, z \in I,(x, y) \in R$ and $(y, z) \in R$

$$
\begin{aligned}
& \Rightarrow \mathrm{x}-\mathrm{y}=3 \mathrm{k}_{1} \text { and } \mathrm{y}-\mathrm{z}=3 \mathrm{k}_{2} \quad\left(\mathrm{k}_{1} \text { and } \mathrm{k}_{2} \text { are integers }\right) \\
& \Rightarrow(\mathrm{x}-\mathrm{y})+(\mathrm{y}-\mathrm{z})=3\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)=3 \mathrm{~m}\left(\mathrm{~m}=\mathrm{k}_{1}+\mathrm{k}_{2} \text { is an integer }\right) \\
& \Rightarrow(\mathrm{x}-\mathrm{z})=3 \mathrm{~m} \\
& \Rightarrow(\mathrm{x}, \mathrm{z}) \in \mathrm{R} \\
& \text { Hence } \mathrm{R} \text { is transitive. }
\end{aligned}
$$

Since R is reflexive, symmetric and transitive relation, hence R is an equivalence relation.
b. Prove that if $L$ is a bounded distributive lattice and if a complement exists in $L$, it is unique.

## Answer:

Let L be a bounded and distributive lattice. Let $\mathrm{a} \in \mathrm{L}$. Let a 1 and a 2 be two complements of a . Then $\mathrm{a} \vee \mathrm{a} 1=\mathrm{I}$ and $\mathrm{a} \wedge \mathrm{a} 1=0$ and also $\mathrm{a} \vee \mathrm{a} 2=\mathrm{I}$ and $\mathrm{a} \wedge \mathrm{a} 2=$ 0

Then $a 1=a 1 \vee 0=a 1 \vee(a \wedge a 2)=(a 1 \vee a) \wedge(a 1 \vee a 2) \quad(b y$ distributive law)

$$
\begin{equation*}
=I \wedge(a 1 \vee a 2)=(a 1 \vee a 2) \tag{1}
\end{equation*}
$$

$$
\text { Also a2 }=\mathrm{a} 2 \vee 0=\mathrm{a} 2 \vee(\mathrm{a} \wedge \mathrm{a} 1)=(\mathrm{a} 2 \vee \mathrm{a}) \wedge(\mathrm{a} 2 \vee \mathrm{a} 1)
$$

$$
\begin{equation*}
=I \wedge(a 2 \vee a 1)=(a 1 \vee a 2) \tag{2}
\end{equation*}
$$

By (1) and (2) we have a1 = a2. Hence complements are unique.
Q. $7 \quad$ a. Consider the functions $f: R \rightarrow R$ and $g: R \rightarrow R$, defined by $f(x)=2 x+3$ and $g(x)=x^{2}+1$. Find the composite functions (gof)(x) and (fog)(x).

## Answer:

Composite function: Consider a function $f: A \rightarrow B$ such that $f(a)=b$ and $g: B \rightarrow C$ such that $\mathrm{g}(\mathrm{b})=\mathrm{c}$, then a function gof: $\mathrm{A} \rightarrow \mathrm{C}$ is called composite function and defined as
$(g o f)(a)=g(f(a))=[c \mid \exists$ an element $b \in B$ such that $f(a)=b$ and $g(b)=c]$.
We know that $(g o f)(x)=g(f(x))=g(2 x+3)=(2 x+3)^{2}=4 x^{2}+12 x+9$.

$$
\text { and }(f o g)(x)=f(g(x))=f\left(x^{2}\right)=2 x^{2}+3
$$

b. Let $X=\{a, b, c\}$. Define $f: X \rightarrow X$ such that $f=\{(a, b),(b, a),(c, c)\}$.

Find:
(i) $\mathrm{f}^{-1}$
(ii) $\mathbf{f}^{\mathbf{2}}$
(iii) $\mathbf{f}^{3}$
(iv) $f^{4}$

## Answer:

Since given function is one-one and onto, we can find it's inverse as
$\mathrm{f}^{-1}=\{(\mathrm{b}, \mathrm{a}),(\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{c})\}$
$\mathrm{f}^{2}=$ fof $=\{(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{a}),(\mathrm{c}, \mathrm{c})\} \mathrm{o}\{(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{a}),(\mathrm{c}, \mathrm{c})\}=\{(\mathrm{a}, \mathrm{a}),(\mathrm{b}, \mathrm{b}),(\mathrm{c}, \mathrm{c})\}$
$\mathrm{f}^{3}=$ fof $^{2}=\{(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{a}),(\mathrm{c}, \mathrm{c})\} \mathrm{o}\{(\mathrm{a}, \mathrm{a}),(\mathrm{b}, \mathrm{b}),(\mathrm{c}, \mathrm{c})\}=\{(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{a}),(\mathrm{c}, \mathrm{c})\}$
$\mathrm{f}^{4}=\operatorname{fof}^{3}=\{(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{a}),(\mathrm{c}, \mathrm{c})\} \mathrm{o}\{(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{a}),(\mathrm{c}, \mathrm{c})\}=\{(\mathrm{a}, \mathrm{a}),(\mathrm{b}, \mathrm{b}),(\mathrm{c}, \mathrm{c})\}$
Q. 8 a. Show that the set of rational numbers $\mathbf{Q}$ forms a group under the binary operation * defined by $\mathbf{a}^{*} \mathbf{b}=\mathbf{a}+\mathbf{b}-\mathbf{a b}$, for all $\mathbf{a}, \mathrm{b} \in \mathbf{Q}$. Is this group abelian?

## Answer:

( $\mathrm{Q},{ }^{*}$ ) will form a group if '*' satisfies these four properties:
(i) Closure property: Let $\mathrm{a}, \mathrm{b} \in \mathrm{Q}$ then $\mathrm{a} * \mathrm{~b}=\mathrm{a}+\mathrm{b}-\mathrm{ab} \in \mathrm{Q}$ as addition and multiplication of rational numbers will also be rational number.
(ii) Associative property: It says $\mathrm{a}^{*}\left(\mathrm{~b}^{*} \mathrm{c}\right)=\left(\mathrm{a}^{*} \mathrm{~b}\right)^{*} \mathrm{c}$, for all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Q}$. Then according to the given definition of ' $*$ '

$$
\begin{align*}
\mathrm{a}^{*}\left(\mathrm{~b}^{*} \mathrm{c}\right)=\mathrm{a} *(\mathrm{~b}+\mathrm{c}-\mathrm{bc}) & =\mathrm{a}+(\mathrm{b}+\mathrm{c}-\mathrm{bc})-\mathrm{a}(\mathrm{~b}+\mathrm{c}-\mathrm{bc}) \\
& =\mathrm{a}+\mathrm{b}+\mathrm{c}-\mathrm{ab}-\mathrm{ac}-\mathrm{bc}-\mathrm{abc} \tag{1}
\end{align*}
$$

and $\left(a^{*} b\right)^{*} c=(a+b-a b) * c=a+b-a b+c-(a+b-a b) c$

$$
\begin{equation*}
=a+b+c-a b-a c-b c-a b c \tag{2}
\end{equation*}
$$

By (1) and (2) associative property is satisfied.
(iii) Identity: Let e be the identity, then $\mathrm{a}^{*} \mathrm{e}=\mathrm{a}$ $a+e-a . e=a \quad\left(b y\right.$ definition of ' ${ }^{*}$ ’) then $\mathrm{e}=0$ and 0 is s rational number.
Hence 0 is the identity.
(iv) Inverse: Let b be the inverse of a such that $\mathrm{a} * \mathrm{~b}=\mathrm{e}=0$

$$
\text { Then } \mathrm{a}+\mathrm{b}-\mathrm{ab}=0
$$

$$
b=-a /(1-a) \text {, since } a \in Q,-a /(1-a) \in Q
$$

Hence for all $a \in Q$, there exist inverse of $a$ in $Q$ such that $a^{*} a^{-1}=e$. Thus (Q, *) forms a group. Now for abelian group we have to check for commutative property.

Commutative property: It says, for $\mathrm{a}, \mathrm{b} \in \mathrm{Q} \mathrm{a}^{*} \mathrm{~b}=\mathrm{b} * \mathrm{a}$
Then $\mathrm{a}+\mathrm{b}-\mathrm{ab}=\mathrm{b}+\mathrm{a}-\mathrm{ba}$ (addition and multiplication are always commutative)
Hence the given set Q with binary operation * defined as $\mathrm{a} * \mathrm{~b}=\mathrm{a}+\mathrm{b}-\mathrm{ab}$ forms an abelian group.

## b. How many generators are there of the cyclic group of order 8?

## Answer:

Let a be the generator of $G$. Then $o(a)=8$.
We can write $G=\left\{a, a^{2}, a^{3}, a^{4}, a^{5}, a^{6}, a^{7}, a^{8}\right\}$. We know that if $G$ is cyclic group generated by a and $o(a)=n$, then $a^{m}$ is a generator of $G$ if and only if $m$ and n are relatively prime. So we make the following observations:

7 is prime to 8 , so $\mathrm{a}^{7}$ is also a generator of G .
5 is prime to 8 , so $\mathrm{a}^{5}$ is also a generator of G .
3 is prime to 8 , so $\mathrm{a}^{3}$ is also a generator of G .
Since 2 and 8,4 and 8,6 and 8,8 and 8 are not relatively prime; therefore none of the elements $a^{2}, a^{4}, a^{6}$ and $a^{8}$ can be generator of $G$.
Hence there are only four generators of G i.e; $a, a^{3}, a^{5}$ and $a^{7}$
Q. 9 a. Determine the group code $(3,6)$ using parity check Matrix H given by

$$
\mathbf{H}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

## Answer:

Here the message code consisting 3 information digit is

$$
B=[000,100,010,001,110,011,111]
$$

The generator matrix $G$ of the given parity check matrix is

$$
G=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

So, we find the $(3,6)$ code C by $\mathrm{C}=\mathrm{B}^{\mathrm{T}}$. G
Thus, $\mathrm{C}=\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right] \cdot\left[\begin{array}{llllll}1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1\end{array}\right]=\left[\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0\end{array}\right]$

C is the desired code word.
b. Define Ring. Prove that if $\mathbf{a}, \mathbf{b} \in(\mathbf{R},+, \cdot \bullet)$, then $(\mathbf{a}+\mathbf{b})^{2}=\mathbf{a}^{2}+\mathbf{a} \cdot \mathbf{b}+\mathbf{b} \cdot \mathbf{a}$ $+b^{2}$, where by $x^{2}$ we mean $x \cdot x$.

## Answer:

Ring: A non-empty set R with two operations called 'addition’ and 'multiplication' is call a ring ( $\mathrm{R},+,$. ) if it satisfies the following axioms:
(i) $(\mathrm{R},+)$ is an abelian group, that is
i. ' + ' is closed. If $a, b \in R$, then $a+b \in R$.
ii. ' + ' is associative i.e, for any $a, b, c \in R,(a+b)+c=a+(b+c)$
iii. ' + ' is commutative i.e, $(a+b)=(b+a)$
iv. There exist a additive identity $e=0$ such that $a+0=0+a=a$
v. For $a \in R$, there exist $-a \in R$ such that $a+(-a)=(-a)+a=0$.
(ii) (R,.) is a semi-group i.e,
(a) ' $\because$ ' is closed i.e, for any $a, b \in R, a . b \in R$
vi. $\quad \because$ is associative i.e, for any a, b, c $\in$ R, (a.b).c $=$ a.(b.c)
(iii) Multiplication is distributive over addition i.e,

$$
\mathrm{a} .(\mathrm{b}+\mathrm{c})=\mathrm{a} \cdot \mathrm{~b}+\mathrm{a} \cdot \mathrm{c} \text { and }(\mathrm{a}+\mathrm{b}) . \mathrm{c}=\mathrm{a} \cdot \mathrm{c}+\mathrm{b} \cdot \mathrm{c}
$$

Now it is given that $\mathrm{x}^{2}=\mathrm{x} \cdot \mathrm{x}$
Thus $(a+b)^{2}=(a+b) \cdot(a+b)=a \cdot(a+b)+b \cdot(a+b) \quad$ by distributive law

$$
\begin{aligned}
& =(a . a+a . b)+(b . a+b . b) \\
& =\left(a^{2}+a \cdot b+b \cdot a+b^{2}\right) \quad \text { given that } x^{2}=x \cdot x
\end{aligned}
$$

Hence proved.

## TEXT BOOK

Discrete Mathematical Structures, D.S. Chandrasekharaiah, Prism Books Pvt. Ltd., 2005.

